Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Autoimmun ; 132: 102893, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36029715

RESUMO

BACKGROUND: Orally administered dimethyl fumarate (DMF) presents gastrointestinal adverse effects, such as pain and diarrhea, in addition to flushing and lymphopenia. OBJECTIVE: Solid lipid nanoparticles (SLNs) with DMF were developed for subcutaneous administration. METHODS: DMF-incorporated SLNs and free DMF were tested in mice induced with experimental autoimmune encephalomyelitis (EAE). RESULTS: Preventive treatment of free or incorporated DMF were able to reduce the EAE clinical scores, increase the weight of the animals, reduce the lesion area (demyelination and infiltration), reduce microglial fluorescence intensity and reduce the number of microglial cells and astrocytes, when compared to untreated EAE animals. Groups that received DMF had reduced numbers of T cells, B cells and natural killer (NK) cells in the blood, when compared to the non-induced group. CONCLUSIONS: DMF incorporated in SLNs was as effective as free DMF in reducing the clinical scores of the animals, but with reduced administrations when given subcutaneously. In addition, SLN-DMF preventive treatment partially prevented a reduction in the percentages of T and B cells, in the blood, when compared to preventive treatment with free DMF (oral), which suggests reduction of lymphopenia.


Assuntos
Encefalomielite Autoimune Experimental , Linfopenia , Esclerose Múltipla , Camundongos , Animais , Fumarato de Dimetilo/farmacologia , Fumarato de Dimetilo/uso terapêutico , Esclerose Múltipla/tratamento farmacológico , Lipossomos , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/prevenção & controle , Modelos Animais de Doenças
2.
Appl Biochem Biotechnol ; 186(4): 1061-1073, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29862444

RESUMO

A cantilever nanobiosensor functionalized with vegetable source of peroxidase was developed as an innovative way for glyphosate herbicide detection over a wide concentration range (0.01 to 10 mg L-1) using atomic force microscopy (AFM) technique. The extract obtained from zucchini (Cucurbita pepo source of peroxidase), with high enzymatic activity and stability has been used as bio-recognition element to develop a nanobiosensor. The polarization-modulated reflection absorption infrared spectroscopy (PM-RAIRS) demonstrated the deposition of enzyme on cantilever surface using self-assembled monolayers (SAM) by the presence of the amide I and II bands. The detection mechanism of glyphosate was based on the changes in surface tension caused by the analyte adsorption, resulting in a conformational change in the enzyme structure. In this way, the results of nanobiosensor demonstrate the potential of the sensing device for detecting glyphosate with a detection limit of 0.028 mg L-1.


Assuntos
Técnicas Biossensoriais/métodos , Cucurbita/enzimologia , Glicina/análogos & derivados , Peroxidase/química , Proteínas de Plantas/química , Glicina/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...